2001 年, Journal of Fixed Income 上有篇论文题为On Default Correlation: A Copula Function Approach。这篇文章引入了衡量违约概率和违约相关性的模型,后来被交易员和评级公司广泛应用于 CDO 的定价和评级。2008 年该类产品的崩溃形成了次贷危机,也让其背后的作者李祥林声名大振。有人认为他是导致美国次贷危机的罪魁祸首,比如wired和金融时报都刊登了专栏报道,里面有相当多的八卦,我这篇文章的标题也是借用这些报导的标题。
我在这里主要介绍下其中的技术性细节,即李祥林在论文里到底说了什么。
1、违约相关性是什么和它为什么重要
李祥林这篇论文主要介绍了衡量违约概率和违约相关性的模型。违约概率比较容易被理解。这里主要说下违约相关性。
违约相关性,是指不同实体或者证券违约事件的相关性。某些公司之间的违约相关性很高,比如中国钢铁企业大面积破产的话,必和必拓这些铁矿石厂商也会不好过。还有一些情况就不那么容易分析,某些看似没有关系的实体之间也存在联系,比如俄罗斯和墨西哥的国债相关性有多大?在通常情况下,其相关性很小。但由于国际市场越来越整体化,俄罗斯和墨西哥的债券是同一批买家。当其中一个国家违约时,投资者会恐慌性抛售另外一个国家的国债,使得违约相关性急剧增加。1998 年,长期资本管理公司就遇到了这种情况。由于受到国际宏观因素的影响,一般不同实体之间都有一些正相关关系。
另外值得一提的是相关性和相关系数的区别。相关系数只是衡量相关性的一个指标,它损失了很多相关信息。但下面将提到,李祥林使用 Copula 的概念,又只用了相关系数就刻画了相关性。
随着信用衍生品市场的发展,违约相关性的度量变得越来越重要:
- 在衡量投资组合的风险时,需要将组合当作一个整体。不同头寸之间的相关性将影响到组合整体的风险。
- 在购买 CDS 保护时, CDS 的卖方与 CDS 的标的企业相关性对 CDS 的价值有影响。比如如果该相关性很大的话,当标的企业破产, CDS 的卖方也很可能破产了,这样 CDS 买方很可能得不到赔偿,从而该合约的价值比相关性低的卖方提供的 CDS 价值小。
- 市场对一篮子 CDS 进行分层交易,比如 50 个公司的 CDS ,那么可以购买 3%到第 7%的票面损失的保护。即该分层 CDS 的买方得不到这一篮子公司的前 3%的违约损失,并且最多得到票面金额的 4%的赔偿。这里事实上就是在交易信用相关性。
- CDO (债务抵押证券)和上面的 CDS 分层交易是相同的思路,不同的 Tranche 依次吸收信用风险(实际情况比这个更复杂),相关性的变动对各个级别的定价和评级影响非常大。CDO 的评级和定价也是李祥林的模型主要被使用的地方。
李祥林提出的方法非常简单直接,后来成为上述问题,特别是 CDO 的评级的标准解决方法。标普和穆迪借助该方法,将无数 CDO 评成了 AAA 推向了市场。这些资产最终在 2008 年崩溃,连带着李祥林被认为是造成美国次贷危机的罪魁祸首。
2、李祥林之前的处理方法
在李祥林发表论文之前,市场上主要使用评级公司的评级和历史统计样本数据。先确定各个证券的评级,然后利用评级公司公布的数据来计算违约率和相关性。
相对李祥林后来提出的利用当时市场价格,使用评级公司的数据存在一些问题:
- 评级公司的评级存在滞后效应。
- 评级主要被用来确定违约率。但在计算信用风险时同时还需要确定回收率。
- 使用评级的数据忽略了公司的个体差异。
- 评级公司对一年期的数据公布比较详细,而其它期限的数据不齐全,从转移矩阵推算出来的数据会不准确。
- 资产组合基础产品以市场计价,所以基于这些产品的衍生品也应当与市场价相应变动。单独使用评级数据达不到这个效果。
3、李祥林的处理方法
李祥林对这两个问题都提出了简单的处理方式,事实上成为了后来交易员和评级公司处理 CDO 等资产的标准方法。
3.1、违约概率的估计
李祥林提出,应该从市场价格来推算违约率。这里的市场价格指 CDS 利差、资产互换利差、债券价格、Metro 模型等。这些都是比较正常的想法,没什么太大问题,直到现在大家也在一直这么做。而且我觉得,在 2000 年之前,大家就已经就这么做了。
3.2、用 Copula 刻画违约时间相关性
李祥林的论文的主要贡献是在对违约相关性的估计上。但在了解他的解决方法之前,我们首先需要了解 Copula 这个概念。Copula 是对多元随机变量相关性的刻画。假设随机变量$ X_1,X_2,\cdots,X_n$ 的分布函数分别是$ F_1,F_2,\cdots,F_n$ ,其联合分布函数为$ F$ 。这里$ F_i$ 也可以看作是$ F$ 的边际分布。不妨设$ F_i$ 为连续严格递增函数(该条件不是必需的),那么该$ n$ 元联合分布的 Copula 为:
Copula 完整刻画了随机变量之间的相关性关系(注意它涵盖的信息比相关系数要大得多)。显然,对于一个 Copula ,给定各个随机变量的边际分布函数,我们也可以定义一个联合分布:
我们在计算 VaR 的时候常用联合正态分布,这是因为风险因子基本上属于正态分布。但单个资产的违约时间并不是这样,更合理的分布是指数分布。这时候 Copula 就派上了用场。无论单个资产的违约时间的分布是什么样子,它们之间的相关性都可以用相同的 Copula 来刻画。比如我们假设它们的 Copula 就是正态分布 Copula (也被称为高斯 Copula ),这时候我们就将问题简化成它们之间的相关系数。对于两个资产,这只需要一个参数。这也是Wired 的报导中多次提到的李祥林用一个数$ \rho$ 来刻画违约相关性:
其中$ \Psi_\rho$ 是相关性为$ \rho$ 的联合正态分布。这可以看出,利用边际分布和 Copula 可以拟合更复杂的联合分布,而不会增加需要拟合的参数数量。
网络上有些文章说李祥林发明了 Copula ,这显然是错误的。Copula 至少有 50 年以上的历史。在李祥林出生以前,它就是用来处理相关性的基本模型。李祥林只不过是第一个提出用它给衡量金融违约事件的相关性。
3.3、对违约相关性的处理
李祥林的一个核心思路是,违约相关性可以用 Copula 来处理。剩下来的工作则是如何生成该 Copula ,或者说如何确定该 Copula 的参数。这时候方法并不一定。比如如果选择使用正态分布的 Copula ,需要估计该分布的协方差矩阵,这可以通过计算标的资产的相关性来获得,就跟将全部资产看作一个联合正态分布是一样的。
李祥林给的例子是使用正态分布的 Copula。此时将问题从相关关系简化为相关系数。而相关系数可以直接从历史价格数据中获得。
4、论文里没有完成的工作
单看李祥林的论文,我认为至少有两个重要的工作没有完成。其一是没有说明使用正态分布 Copula 的合理性;其二是没有说明相关性的时变性的严重程度。而这两个地方都很重要,可以说是后来模型和市场实际表现脱节的主要原因:
- 虽然李祥林列出了几种 Copula ,但正态 Copula 是其中最容易被理解和计算的。李祥林给的例子也是使用正态 Copula。因此,后来交易员和评级公司基本上是使用正态 Copula。
- 相关性的时变性是指相关性并不是静态的,而会随着时间和市场变化。这是一个更严重的问题。2008 年的次贷危机证明,当某些产品出现危机时,其它产品与它们的相关性会大大增加,从而使得某些衍生品的风险大大增加。在计算日度和周度风险时,不太需要考虑这个问题,因为变动是连续的,可以预期几天之内变化不大。但如果要进行长期和全周期评估时,相关性的时变性必须考虑在内。要么说明时变性不重要;要么在模型里面加入时变性。但在李祥林这篇论文里,这两点都没有被提到。
5、参考资料
- Li, David X. (2000). "On Default Correlation: A Copula Function Approach". Journal of Fixed Income
- Salmon, Felix (March 2009). "Recipe for Disaster: The Formula That Killed Wall Street". Wired.com
- Jones, Sam (April 24, 2009). "The formula that felled Wall St". Financial Times
Q. E. D.